ΕΠΙΣΚΕΥΗ – ΕΝΙΣΧΥΣΗ ΘΕΜΕΛΙΩΝ

ΜΑΤΣΟΥΚΑΣ ΠΑΝΑΓΙΩΤΗΣ

ΟΙΚΟΝΟΜΟΠΟΥΛΟΣ ΓΡΗΓΟΡΗΣ

ΠΕΡΙΛΗΨΗ

Στην εργασία αυτή προσπαθούμε να παρουσιάσουμε τους κυριότερους τρόπους επέμβασης στα θεμέλια που έχουν υποστεί βλάβες. Εξαιτίας της αβεβαιότητας που διακρίνουν τα χαρακτηριστικά των εδάφων, δεν θα μπορούσαμε να παραλίγοσουμε τις βλάβες που προκαλούνται στα θεμέλια λόγω των απρόβλεπτων εδαφικών παραμέτρων, με κίνδυνο να "βρούμε εκτός θέματος", μιας και αποτελεί θέμα (κυρίως) της επιστήμης του Εδαφομηχανικού. Ακόμα σ’ είναι κομμάτι της εργασίας μας παρουσιάζουμε μέτρα διασφάλισης των γεωτονικών θεμελίωσεων (πιστοθεμελίωσεις), εργασία που παλλής φορές υποτιμάται, με απρόβλεπτες συνέπειες για τις περιουσίες ακόμη και για τις ζωές ανθρώπων. Τέλος θεωρήσαμε σκοπό να κάνουμε μια μικρή αναφορά στα τοιχώματα επείδη συμμετέχουν σε σημαντικό βαθμό στην ακαμψία και την θεμελίωση των κατασκευών.

1. ΕΙΣΑΓΩΓΗ [1], [6]

Επειδή από τη συμπεριφορά και την ασφάλεια των στοιχείων θεμελίωσης, εξαρτάται η ακεραία ολόκληρη της κατασκευής, τα στοιχεία θεμελίωσης είναι τα σημαντικότερα, από άποψη ασφάλειας, στοιχεία του δομικού συστήματος και ο σχεδιασμός τους πρέπει να γίνεται με ανάλογη προσοχή και πάντοτε συντηρητικότερα από τα λοιπά στοιχεία του δομικού συστήματος.

Όπως αναφέρθηκε στην περίληψη, η ένταση που αναπτύσσεται στα στοιχεία θεμελίωσης από την μεταφορά των φορτίων της ανωδομής στο έδαφος, εξαρτάται σε μεγάλο βαθμό από τα χαρακτηριστικά του εδάφους θεμελίωσης, που συνήθως δεν είναι γνωστά με την επιθυμητή ακρίβεια και αξιοπιστία.

Οι κίνδυνοι που παρουσιάζονται εξατάται του παραπάνω είναι τα εξής:

- Κίνδυνος υποχώρησης ή καθίζησης των θεμελίων (σημ.: μια μικρή καθίζηση, μερικών εκατοστών, δημιουργεί μεγάλα εντατικά μεγέθη στους κόμβους μιάς κατασκευής).
- Κίνδυνος θράσης θεμελίων.

Τέλος, κίνδυνος για τα θεμελία παρουσιάζεται και όταν:

- Γίνεται αύξηση των φορτίων μιας κατασκευής (π.χ. προσθήκη όροφου) και άρα αύξηση των σεισμικών φορτίων που ενδεχομένως να δεχτεί η κατασκευή.
- Γίνεται νέα κατασκευή σε όμορο γήπεδο (μεσοτοιχία).
- Υπάρχουν βλάβες από παλιότερους σεισμούς ή από πλημμύρες (διάβρωση οπλισμού).

Οι κυριότεροι τρόποι επέμβασης για την βελτίωση των θεμελίων μπορούν να πραγματοποιηθούν με τις ακόλουθες δομικές μεθόδους:

- Μεγέθυνση των υπαρχόντων θεμελίων.
- Κατασκευή νέων προσθετικών θεμελίων δίπλα στα υπάρχοντα (ενδεχομένως και πασσαλοί) που θα συμμετάσχουν στην ανάληψη φορτίων μέσω διαδοκίδων.
- Αύξηση της ασφάλειας κατά θράσης του εδάφους.
- Βελτίωση του υπεδάφους.

Πολύ σημαντικός παράγοντας στην επιτυχία της επέμβασης μας στα θεμέλια μιας κατασκευής, είναι η τεχνική κατάρτιση του συνεργείου που θα αναλάβει το έργο. Τέλειοντας θα πρέπει να λαμβάνονται από όλους τους εμπλεκόμενους του έργου,
2. ΑΣΦΑΛΕΙΑ ΣΤΗΝ ΘΡΑΥΣΗ ΕΔΑΦΟΥΣ [1]

Όταν το έδαφος μιας κατασκευής, φορτισθεί τόσο ώστε να σχηματισθούν μέσα σ’ αυτό επιφάνειες ολίσθησης κατά τις οποίες η αντοχή σε διατήμηση έχει ξεπεραστεί, τότε συμβαίνει πλευρική διαφυγή του εδάφους και διόγκωση του κατά τις πλευρές του δομικού έργου. Έτσι λοιπόν όταν δεν προκύπτει κίνδυνος καθίζησης, αλλά θραύσης του εδάφους, δεν προστρέχουμε απαραίτητα σε στερεοποίηση ή βελτίωση του εδάφους ή ακόμη και σε διευρύνση των υπάρχοντων θεμελίων. Αυτό που επιδιώκουμε είναι να εμποδίσουμε την πλευρική διαφυγή του εδάφους, με την βοήθεια ασφαλιστικών διατάξεων εκκατέρωθεν και κατά μήκος του συνεχούς θεμέλιου (π.χ. έμπυξη πασσαλοσανίδων σε σειρά) (σχήμα 1).

![Σχ.: 1. Αύξηση της ασφάλειας κατά θραύση εδάφους με πασσαλοσανίδες](image)

3. ΒΕΛΤΙΩΣΗ ΥΠΕΔΑΦΟΥΣ [1], [7]

Οι καθιζήσεις αποτελούν ένα σημαντικό κεφάλαιο της εδαφομηχανικής και διακρίνονται σε οριζόντιες και κατακόρυφες (με πιο σημαντικές για τις κατασκευές από οπλισμένο σκυρόδεμα τις κατακόρυφες). Ως αποτέλεσμα των καθιζήσεων, είναι η εμφάνιση ρογμών στην κατασκευή μας. Οι ρηγματώσεις εμφανίζονται κατά τις επόμενες χαρακτηριστικές φάσεις: αρχική αναλυτική, προχωρημένη αναλυτική, περιστροφική, πλήρους αποκόλλησης. Η μελέτη των ρηγματώσεων μας βοηθάει στο να γνωρίζουμε την φύση των στατικών, δομικών και περιβαλλοντολογικών αιτίων που ευθυνούν για τις καθιζήσεις των κατασκευών. Στις βραχείες καθιζήσεις, οι ρογμές λόγω στρέψης έχουν κλίση και λόγω κάμψης και διατήμηση είναι εφαρμοκινές στο πλευρικό τμήμα του τοίχου, ενώ στις μακρές καθιζήσεις οι ρογμές λόγω διάτημησης εμφανίζονται με δύο μορφές : 1) με κλίση 45°, στρέφοντας τις κορυφές κάθετα στις πλευρικές επιφάνειες του τοίχου και 2) εφαρμοκινές στις πλευρικές επιφάνειες του τοίχου.

Η προσφοράτηρη μέθοδος επέμβασες στις θεμελίωσεις, είναι αναμφίσβητου η σύνθεση της αντοχής του εδάφους (με διαπόνση), οπότε αποφεύγονται καθιζήσεις, ρογμές. Δεν επέδεχονται όμως όλα τα εδάφη αυτή την μέθοδο. Επιδεικτικά διαποτίσεις είναι όλα τα εδάφη που διαρρέονται από νερό. Χαρακτηριστικό παράδειγμα διαπόνσης και αγκύρωσης ταυτογρόνως, αποτελεί η περίπτωση, που έχουμε δομικά μέλη (π.χ. τοίχοι αντιστροφές με μεγάλο πλάτος) που υποβάλλονται σε οδήγηση γαιών και ενδεχομένως να χειραστεί να ενσωματωθεί και ένα περίζωμα δυσκαμψίας με κατάλληλη πίσω αγκύρωση (σχήμα 2).

![Σχ.: 2. Υποθεμελίωση σε υποκείμενος σε οδήγηση γαιών τοίχος αντιστροφής](image)
4. ΕΝΙΣΧΥΣΕΙΣ ΣΤΟΙΧΕΙΩΝ ΘΕΜΕΛΙΩΣΗΣ [1], [2], [3], [8]

Τέσσερις τρόποι επέμβασης, για την επισκευή και την ενίσχυση των θεμελίων, αναφέρονται παρακάτω:

- Ενίσχυση με αύξηση του ύψους του πεδίου
- Ενίσχυση με αύξηση των διαστάσεων του πεδίου
- Μεγέθυνση των πεδίων
- Κατασκευή νέων θεμελίων

Στις δύο πρώτες περιπτώσεις χρησιμοποιείται κάποιας μανδύας από σκυρόδεμα σε συνδυασμό με την τοποθέτηση νέων οπλισμών, διαμήκον αλλά και συνδετήρων. Παρακάτω παρουσιάζουμε τον τρόπο με τον οποίο δουλεύουμε τα πρηγμόνια.

4.1 ΑΥΞΗΣΗ ΥΨΟΥΣ ΠΕΔΙΟΥ

Μια τέτοια ενίσχυση γίνεται με την χρήση ενός μανδύα από σκυρόδεμα. Γενικά για να διασφαλίσουμε την αποτελεσματική συνεργασία μεταξύ του παλιού και του νέου σκυροδέματος και να βελτιώσουμε την συνάφεια στην διεπιφάνεια, είναι απαραίτητο να τηρήσουμε τις πιο κάτω συστάσεις κατά την προετοιμασία και την σκυροδέτηση:

- Να γίνει καθαίρεση του βλαμμένου ή αποδιοργανωμένου σκυροδέματος.
- Να διαμορφωθούν κολώτητες για καλύτερο εγκιβωτισμό του νέου υλικού και να γίνει αποκάλυψη των οπλισμών και αγρίμια της διεπιφάνειας.
- Να γίνει συμπληρωματική μηχανική εκτράχυνση της διεπιφάνειας με αμμοβολή.
- Να γίνει έκπλυση της διεπιφάνειας με άρθρο νερό υπό πίεση για να φύγει το σκόνη και διαβροχή του παλιού σκυροδέματος μέχρι κορεσμού πριν τη διάστροφη.
- Αφού γίνει η σκυροδέτηση να διατηρείται συνεχώς για υγρή κατάσταση η επιφάνεια του στοιχείου με βρεγμένες λινάτσες.

Σ’ αυτό το σημείο, θα πρέπει να εξασφαλίσουμε ότι η πυκνότητα του οπλισμού θα επιτρέπει τη διέλευση των χονδρών αδρανόν και ότι θα γίνεται σωστά η συμπόσκωση του σκυροδέματος. Το νέο σκυρόδεμα που χρησιμοποιείται, θα πρέπει να έχει αντοχή μεγαλύτερη από το παλίο, τοποθετούντας κατά 5 Mpa (οι συστάσεις του ΕΜΠ ορίζουν 10 Mpa) ώστε να επιτυγχάνονται καλύτερα χαρακτηριστικά συνάφειας και συνοχής στην διεπιφάνεια. Τα αδρανή υλικά που χρησιμοποιούνται κατά την παρασκευή του δεν πρέπει να έχουν διάμετρο μεγαλύτερο από 2 cm. Τέλος, κατά τη διάστροφη το σκυρόδεμα πρέπει να έχει ρευστότητα, διεισδυτικότητα, αλλά και πλαστικότητα. Επιβάλλεται η χρήση δονητής.

Επιπλέον, πρέπει να δημιουργηθούν «φωλίες» στη διεπιφάνεια αλλά να τοποθετηθούν βλάστηκαν τη καλύτερη συνεργασία του παλιού υλικού με το νέο (σχήμα 3).

Ο μανδύας που θα κατασκευαστεί, θα πρέπει να καλύπτει τοποθετούν το μισό του ύψους του πεδίου και να περιλαμβάνει πάντοτε κλειστούς συνδετήρες με ελάχιστο το 012/10 (σχήμα 4). Η μέθοδος αυτή ενίσχυσης του πεδίου είναι άμεσα συσχετισμένη με την αντιμετώπιση του προβλήματος βλάβης σε υποστυλώματα του κατώτερου ορόφου μιας κατασκευής. Συγκεκριμένα στην περίπτωση που ενισχύεται με μανδύα το υπερκέιμενο του θεμέλιου υποστυλώματος, θα πρέπει ο μανδύας αυτός μαζί με τους νέους οπλισμούς να συνεχίζει και να καλύπτει το πέδιλο. Οι οπλισμοί αυτοί αγκυρώνονται μέσα σε «φωλίες» που δημιουργούνται πάνω στο πέδιλο.

Ταυτόχρονα πρέπει να τοποθετηθούν και οριζόντιοι συνδετήρες με ελάχιστο Θ12/10. Ο μανδύας του υποστυλώματος πρέπει να συνεχίζεται πέραν του σημείου συνδέσεως του υποστυλώματος με το πέδιλο, ώστε οι οπλισμοί να έχουν το απαιτούμενο μήκος αγκύρωσης. Αυτό επιτυγχάνεται είτε με τη διάταξη του σχήματος 4, είτε με τη διάταξη του σχήματος 5.
4.2 ΑΥΞΗΣΗ ΔΙΑΣΤΑΣΕΩΝ ΤΟΥ ΠΕΔΙΛΟΥ

Η εφαρμογή της τεχνικής αυτής διευκολύνεται πάρα πολύ εάν ταυτόχρονα με την κατασκευή μανδύα στο πεδίλο, κατασκευαστεί και μανδύας για την αύξηση των διαστάσεων της διατομής του υπερκέιμενου υποστυλώματος και μάλιστα ενιαίος, όπως αναφέρθηκε στην προηγούμενη τεχνική. Στην περίπτωση που αυξάνεται και η διατομή του υποστυλώματος, η πρόσθετη τάση του εδάφους λόγω της αύξησης της διατομής του πεδίλου εξισορροπείται από τις λοξές δυνάμεις στο νέο μανδύα του υποστυλώματος (σχήμα 6).

Σχ.: 6. Πρόσθετη τάση λόγω αύξησης της διατομής του πεδίλου.

Η «ζώνη» που, όπως φαίνεται στα σχήματα που ακολουθούν, δημιουργείται στο πόδι του θεμέλιου, χρησιμοποιεί στην μεταφορά τόσο του πρόσθετου κατακόρυφου αντιδράσεων του εδάφους, όσο και των λοξών δυνάμεων στο μανδύα του πεδίλου. Γι’αυτό και απαιτείται ισχυρή οπλίση με επαρκή αγκύρωση στην περιοχή εκείνη (σχήμα 7).

Στην περίπτωση όμως που δεν γίνεται ταυτόχρονη ενίσχυση του υποστυλώματος, η πίεση του εδάφους που ασκείται στο ενισχυμένο τμήμα του πεδίλου, πρέπει να μεταβιβαστεί απευθείας στο υπάρχον αίμα του πεδίλου. Η μεταβίβαση αυτή μπορεί να επιτευχθεί είτε με βλήτρα είτε με κάποιες πρότυπες μεταλλικές διατόμες που τοποθετούνται κάτω από τα άκρα του υπάρχοντος πεδίλου (σχήμα 8). Η αύξηση του ύψους του πεδίλου πρέπει να είναι τέτοια ώστε να επιτυγχάνεται αύξηση της ακμαίωσης του πεδίλου, ομοιόμορφη διανομή των τάσεων του εδάφους, αλλά και μείωση των απαιτήσεων του πεδίλου για οπλισμό (λόγω κατασκευαστικής δυσκολίας, αλλά και για αποφυγή διαβρώσεων του).
Η διεύρυνση υπάρχοντων θεμελίων με νέα συνεχόμενα σώματα μπετόν, εκτός του γεγονότος ότι το έδαφος έχει προφορτιστεί ήδη από τα υπάρχοντα, παρουσιάζει και δυσχέρειες κατά την μεταβίβαση τέμνουσαν δυνάμεων και ροπών. Ο Gonther ασχολείται με τέτοιες εκ των υστέρων διευρύνσεις θεμελίων σε παλιά ευαισθητά δομικά έργα. Για την μεταβίβαση των τεμνουσών δυνάμεων από τα νέα τμήματα θεμελίων που παραμένουν ελεύθερα τάσεων μέχρι την πραγματοποίηση περατέρω καθιζήσεων, προς το υπάρχον που ως επί το πλείστον θα παρουσιάζει λείες πλευρικές παρείς, χρειάζεται να δημιουργηθεί μια οδόντωση. Τη διάτμηση μπορούν να αναλάβουν ραβδοσιδήροι μέσα σε μπετόν, οι οποίοι θα τοποθετηθούν σε οπές (κανάλια) που θα διατηρούν το βάρος (χωρίς δυνήματα) (σχήμα 9). Το μήκος προσφύγωσης των ράβδων, η σύνδεση του καταβληθμένου κονιάματος και η κατά ανάγκη διάτηση του παλιού θεμελίου, θα ρυθμιστούν ανάλογα προς τις ειδικές επιπτώσεις συνήθεις.

Οι ροπές κάμψης που δημιουργεί η εκκεντρότητα των νέων τμήματος θεμελίου ως προς τον άξονα του υπερκείμενου τοίχου, θα αναλυθούν σε ζεύγη δυνάμεων και θα αντιμετωπίσουν εξωριστά: η μνεί ισού θλιπτική δύναμη σαν εξ’επαφής μεταβίβαση προς την πλευρά του θεμελίου, οπότε η τοιχοποίησή τα περιορίζεται με την σχετικά μικρή επιτρέπουσα πίεση την θλιπτική δύναμη και συνεπώς το πλάτος της ενίσχυσης. Η δε κάτω εφελκυστική δύναμη, μέσω ράβδων χάλυβα που εσάγονται ύστερα από διάτηση και περιβάλλονται από μπετόν και που μπορούν, όταν έχουμε στενά θεμέλια, να τεθούν με ανάκαμψη (σχήμα 10).

Σχ.: 7. Ενίσχυση πεδίων με την τεχνική των μανόδιων, όταν η επέμβαση περιλαμβάνει και ενίσχυση του φέροντος κατακόρυφου στοιχείου.

Σχ.: 8. Ενίσχυση πεδίων, όταν η επέμβαση δεν περιλαμβάνει ενίσχυση του φέροντος κατακόρυφου στοιχείου.

Σχ.: 9. Ανάληψη της τεμνουσας δύναμης με οδόντωση ή λοξές ράβδους ύστερα από

Σχ.: 10. Ανάληψη ροπές κάμψης με σύνδεση επαφής και ανακατάθμισης ράβδους.

- 299 -
4.3 ΜΕΓΕΘΥΝΣΗ ΘΕΜΕΛΙΩΝ

Εκτός από την ενίσχυση του υπάρχοντος πεδίου με την χρήση μανδύα, υπάρχει και η δυνατότητα κατασκευής ενός κύριου σκυροδέματος κάτω από την υπάρχουσα θεμελίωση (σχήμα 11).

Σχ.: 11. Μεγέθυνση πεδίου

4.4 ΚΑΤΑΣΚΕΥΗ ΝΕΩΝ ΘΕΜΕΛΙΩΝ

Η πιο συνηθισμένη αιτία για την δημιουργία πρόσθετων θεμελίων είναι η αύξηση των φορτίων μίας κατασκευής, πιθανών εξαιτίας της προσθήκης νέων ορόφων. Η πιο συνηθισμένη εφαρμογή των παραπάνω, είναι η υποστήριξη τοίχων με την βοήθεια νέων πρόσθετων λωρίδων θεμελίων εκτόςρευματος του υπάρχοντος (σχήμα 12). Τα νέα πρόσθετα φορτία αναλαμβάνονται, το μεγαλύτερο τους μέρος, από τα νέα λωρίδατα θεμέλια με την μεσολάβηση διαδοκίδων που διαπερνούν την τοιχοποιία. Στο καινούργιο θεμέλιο χρησιμοποιούμε και πάσσαλους διατρήσεως οι οποίοι δένονται (η κεφαλή τους) μέσα στο οπλισμένο σκυρόδεμα των δόκων θεμελίωσης. Οι πάσσαλοι αυτοί παρουσιάζουν μικρότερη μάζα καθήκοντας, παρόλλοι αυτά επηρεάζουν τα υπάρχοντα λόγω της αναπότερτης χαλάρωσης του εδάφους και της αρνητικής τριβής.

Σε περίπτωση όπου η καθήκοντα θα πρέπει να περιοριστεί στην τάξη μερικών χιλιοστών, τότε χρησιμοποιούμε μια αδική διάταξη πασσάλων διάτρησης, τους ριζοπασσάλους. Στους ριζοπασσάλους, η έμπειρη τους γίνεται με την μέθοδο της περιστροφικής διείσδυσης, οπλίζοντας με διαμήκες ράβδους και ελικοειδή συνδετήρα.

Σχ.: 12. Υποστήριξη ενός διαμήκου τοίχου υπογείου (αύξηση φορτίου)

5. ΥΠΟΘΕΜΕΛΙΩΣΕΙΣ [1]

Οι υποθεμελιώσεις τοίχων, υπογείων κατά την εκβάθυνση του υπογείου ή των θεμελίων του γειτονικού κτηρίου, δεν σημαίνουν ενίσχυση ή επισκευή κατά κυριολέξια.
ΕΠΙΣΚΕΥΗ – ΕΝΙΣΧΥΣΗ ΘΕΜΕΛΙΩΝ

Εντούτοις θα τις εξετάσουμε εδώ, γιατί χρησιμοποιούνται συχνά σε επισκευές ή ανακαίνισεις.

5.1 ΜΕΤΡΑ ΑΣΦΑΛΕΙΑΣ

Οι υποθεμελίωσεις σε μικρό βάθος δεν παρουσιάζουν στατικά ή θεωρητικά προβλήματα και η ποιοτική τους εξασφάλιση από τη δεξιοτεχνία και την καλή εκτέλεση. Αλλωστε, σε μικρά βάθη η οθόνη γαιών είναι ασθενής, διότι υπάρχει εντατική πίεση λόγω κατακόρυφων δυνάμεων. Οι υποθεμελίωσεις μεγαλύτερου βάθους απαιτούν πάντοτε στατική διερεύνηση, γιατί η οθόνη γαιών αυξάνεται με το βάθος.

Μπορεί να απαιτηθούν τα επόμενα μέτρα ασφαλείας όταν γίνεται αποκάλυψη θεμελιώσεων και υποθεμελίωσεις κατά μήκος ενός τοίχου, προ της ενάρεξης των εργασιών, αφού όμως προηγουμένως γίνει επαρκής αναγνώριση του εδάφους, των υφιστάμενων δομικών έργων και των ενεργούσων δυνάμεων. Λεπτομερή δεδομένα βρίσκονται στο DIN 4123 «Διασφάλιση κτηρίων σε περιοχή εσκαφών, θεμελιώσεις και υποθεμελίωσεις». Συνοπτικά ορισμένα από τα μέτρα που λαμβάνονται είναι τα εξής:

- Βελτίωση ή διασφάλιση του συνδέσμου μεταξύ του υποθεμελιωμένου τοίχου και των συναφών εγκάρσιων τοίχων και πλακών.
- Ωστόσο, λήψη μεταφορωτή επικίνδυνων δομικών στοιχείων προς άλλα δομικά στοιχεία που δεν βρίσκονται στην περιοχή επιρροής των προγραμματισμένων εργασιών.
- Αντιστήριξη τοίχων των οποίων η λεπτομέρεια σαν δίσκοι βρίσκεται σε αμφιβολία (π.χ. χτίσιμο ανοιγμάτων ή τοποθέτηση λαβίδων).
- Αντιστήριξη επικίνδυνων δομικών τμημάτων με αντιρίζη, όταν τόσο στην κεφαλή όσο και στον πάδο μεταδίδονται ή μεταβιβάζονται από αυτά κατακόρυφες ή οριζόντιες δυνάμεις (στο ύψος πλάκας ή από εγκάρσιους τοίχους).
- Αντιστήριξη ή αγκύρωση του υπάρχοντος κτηρίου ως προς νέα ανεγερθέντα τμήματα νέας οικοδομής.

Αν το κέλυφος της νέας οικοδομής τοποθετηθεί βαθύτερα από της παλιάς, τότε το τελευταίο πρέπει να υποθεμελιωθεί καθ’ όλο το μήκος του νέου, με κλιμακωτό τρόπο περίπου κατά τη γονια φυσικού πρανούς. Κατά τις υποθεμελίωσεις πρέπει να λαμβάνεται υπ’ οίκον την δυνατότητα καθιζήσεων του υπάρχοντος κτηρίου λόγω της πρόσθετης φόρτισης του εδάφους θεμελίωσης.

5.2 ΕΚΤΕΛΕΣΗ ΤΗΣ ΥΠΟΘΕΜΕΛΙΩΣΗΣ

Συγκεκριμένα, ένα κτήριο μπορεί να υποστεί βαρείες βλάβες, σαν συνέπεια της κατασκευής ενός νέου κτηρίου σε επαρχία μ’ αυτό, διότι ο βολβός των πιέσεων του καινούργιου τοίχου, τείνει να επιφορτίσει αυτόν τον προηγούμενο τοίχο. Για υποθεμελίωσεις από μπετον ή απλισμένο μπετον ισχύει το DIN 1045. Το πάχος υποθεμελίωσής είναι ίσο τουλάχιστον προς το πλάτος του υποθεμελιωμένου θεμέλιου. Η εσκαφή θα φτάσει ακριβώς μέχρι τη στάθμη των επιπεπωμένων ορίων (σχήμα 13). Χρειάζεται επ’ αυτού προσοχή όταν γίνεται χρήση μηχανικών εσκαφών ή άλλων δομικών μηχανών. Η επιφάνεια εδράσεως δεν επιτρέπεται να είναι χαλαρή ή μαλακή. Η υποθεμελίωση θα κατασκευαστεί σε τμήματα του μήκους που δίνονται από το πλάτος οργανών. Σύγχρονα με την υποθεμελίωση, πρέπει να κατασκευασθεί και το θεμέλιο του νέου κτηρίου. Τα τμήματα υποθεμελίωσής πρέπει να συνδέονται μεταξύ τους στην ίδια περίοδο εργασίας κατά την έννοια του βάθους όσο το δυνατόν περισσότερο. Τα τμήματα του υπάρχοντος κτηρίου με το μέγιστο φορτίο, πρέπει να υποθεμελιωθούν κατά προτεραιότητα. Η υποθεμελίωση πρέπει, αν χρειάζεται, να επεκτεθεί και στους συνεχούς τούχους κλιμακωτά.

Τα νέα θεμέλια πρέπει να κατασκευάζονται τμηματικά εκ παραλλήλων με την υποθεμελίωση και να διαχωρίζονται από έναν αρμόδιο. Αφού τελειώσει η κατασκευή, σε απλή
επαφή με το προηγούμενο κτίριο και χωρίς συσφιγκτήρες, έχει επιτευχθεί η ισορροπία ανάμεσα στα φορτία που δρούν και στην αντίδραση του εδάφους. Οι καινούργιες τοιχοποιίες ενώνονται με τις παλιές διαμέσου κατάλληλων συσφιγκτήρων αν χρειάζονται.

6. ΕΠΙΣΚΕΥΗ – ΕΝΙΣΧΥΣΗ ΤΟΙΧΩΜΑΤΩΝ [2], [4], [5]

6.1 ΒΛΑΒΕΣ ΤΟΙΧΩΜΑΤΩΝ

Τα τοιχώματα στις κατασκευές συμβάλλουν στα μέγιστα στην ανάληψη εντάσεων που προκαλεί ένας σεισμός (ακαμψία, αντοχή και πλαστιμότητα). Μετά από ένα ισχυρό σεισμό οι βλάβες σε τοιχώματα είναι εξίσου συχνές όπως και οι βλάβες στα υποστηλώματα.

Οι βλάβες αυτές διακρίνονται σε διατμητικής ή καμπτικής μορφής.

α) Οι διατμητικοί τύποι βλάβες συναντώνται περισσότερο συχνά και είναι οι πιο σοβαρές. Διαπιστώνονται όταν στο τοίχωμα εμφανίζονται λοξές ρηγματώσεις, που εξακολουθούν τις αντιστροφικές και δράσεις από την κατασκευή (σχήμα 14). Η σοβαρότητα αυτής της βλάβης δεν οφείλεται μόνο στο γεγονός ότι καθίσταται η αστοχία του στοιχείου
ΕΠΙΣΚΕΥΗ – ΕΝΙΣΧΥΣΗ ΘΕΜΕΛΙΩΝ

μας ψαθυρή, αλλά και στο γεγονός ότι μπορεί να δημιουργηθούν εκατέρωθεν μετακινήσεις των τριγωνικών τμημάτων του τοιχώματος, που συνεπάγεται βράζοντα του συνολικού στοιχείου και πιθανή αδυναμία μεταφοράς των κατακόρυφων φορτίων. Γι' αυτό τον λόγο ο τρόπος σχεδιασμού των τοιχομάτων προβλέπει την μόρφωση ενσωμάτωση στα άκρα του τοιχώματος υπό την μορφή εμφανών υποστυλώματων ή «κρυφοκολλώνον» (Ελλ. Καν. Σκυρόδ. Παρ. 18.5.3).

Τα αίτια μιας τέτοιας αστοχίας θα πρέπει βασικά να αναζητηθούν στην συνολική μόρφωση και σχεδιασμό του φορέα. Η μόρφωση των τοιχομάτων θα πρέπει να προσδιδεί στο κτίριο σημαντική περί κατακόρυφων άξονα δυστρεπεία και αυτό επιτυγχάνεται με τη διάταξη δύο τουλάχιστον παραλλήλων τοιχομάτων (κατά προτίμηση και στις δύο οριζόντιες διευθύνσεις) σε σημαντική μεταξύ τους απόσταση εκατέρωθεν του γεωμετρικού κέντρου βάρους του ορόφου σε κάτοψη (σχήμα 15). Ο Ελληνικός Αντισεισμικός Κανονισμός θεωρεί για τον σκοπό αυτό ως επαρκή απόσταση μεταξύ παραλλήλων τοιχομάτων το 1/3 της κάθετης σ’ αυτά μέγιστη διάσταση του ορόφου σε κάτοψη.

β) Οι καμπτικοί τύποι βλάβης συναντώνται πιο σπάνια. Διαπιστώνονται με την μορφή εγκάρσιων ριγιματώσεων στην βάση του τοιχώματος (σχήμα 16) κανόνα στην θεμελίωση και είναι εμφανείς στον ισόγειο όροφο των κτιρίων, όπου έχουν κατασκευαστεί με ισχυρή θεμελίωση. Στην περίπτωση θεμελιώσεως τοιχομάτων σε απλά πέδιλα, οι ριγές που αναπτύσσονται στην βάση είναι μικρότερες, λόγω στροφής του πέδιλου, ενώ δεν υπάρχει σημαντική διαφορά στην αναπτυσσόμενη τέμνουσα. Ετσι, οι αναπτυσσόμενες βλάβες θα είναι διατηρητικής μορφής με πιθανές αστοχίες στις συνδετήρες δοκούς της θεμελίωσης.

![Σχ.: 14. Διατηρητική βλάβη τοιχείου.][1]

![Σχ.: 15. (α) – (γ): Κατάλληλες και (δ) – (ζ) Ανεπαρκείς διατάξεις τοιχομάτων.][2]

![Σχ.: 16. Καμπτική βλάβη τοιχείου.][3]

Μια άλλη, αρκετά συχνή βλάβη, που διαπιστώνεται στα τοιχώματα, είναι η ρηγμάτωση των αρμών διακοπής εργασίας. Οφείλεται στην αδυναμία μεταφοράς τμηματών δυνάμεων στον αρμό. Πάντως αυτή η βλάβη δεν θεωρείται επικίνδυνη γιατί δεν μειώνεται η δυνατότητα μεταφοράς των αξιοκινών φορτίων και επιπλέον, δεν επηρεάζεται η συνολική ακαμψία του φορέα. Ετσι, εάν κατά την σκυροδέτηση του νέου σκυροδέματος δεν είχε δημιουργηθεί η κατάλληλη προετοιμασία της επιφάνειας του παλαιού σκυροδέματος, όπως επιβάλλουν οι κανονισμοί, δημιουργείται αστοχία της διεπιφάνειας απο υπερβασία της διατηρητικής αντοχής του αρμού. Επισήμανεται ότι επειδή οι αρμοί διακοπής εργασίας αποτελούν τα αδύνατα σημεία του τοιχώματος και επειδή οι θέσεις τους συμπίπτουν με τις κρίσιμες διατομές του υποστυλώματος (θέσεις μέγιστης ροπής κάμψης), καλό είναι να ελαχιστοποιείται ο αριθμός τους, δηλαδή να καταργείται ο αρμός διακοπής στην κορυφή του υποστυλώματος και να παραμένει μόνο αυτός στην βάση του.
6.2 ΤΡΟΠΟΙ ΕΠΙΣΚΕΥΗΣ – ΕΝΙΣΧΥΣΗΣ ΤΟΙΧΩΜΑΤΩΝ

Ο τρόπος επέμβασης στα βλάβια στοιχεία τοιχωμάτων συχνά αναλύει με το μέγεθος της βλάβης (απλή ρηγμάτωση, μερική αποδιοργάνωση, πλήρης αποδιοργάνωση). Πάντως θα πρέπει να τονιστεί ότι επισκευάσματα είναι σχεδόν όλες οι βλάβες που παρουσιάζονται στα τοιχώματα από οπλισμένο σκυρόδεμα.

Απλή Ρηγμάτωση: Η τεχνική που χρησιμοποιείται τα τελευταία χρόνια είναι αυτή των ρηγματωτών. Αλλάς τεχνικές είναι με χρήση επισκευαστικών κονιαμάτων με βάση το σιάλινο ή FIBER GLASS.

Μερική Αποδιοργάνωση: Οι βλάβες αυτού του βαθμού αποκαθίστανται με μερική καθαίρεση του σκυροδέματος που έχει υποστεί βλάβες και αντικατάσταση αυτού με έγχυτο ή εκτοξευόμενο σκυρόδεμα. Όσον αφορά στην ενίσχυση, μπορεί να γίνει με περίφημη μέσω επικολλητικών ή προεντεκαμένων κολλάρων, μέσα χρήσης στερεοειδούς οπλισμού ή και με χρήση ολόσωμου μανδύα από φύλλα χάλυβα ή FRP.

Εξαιτίας του μεγάλου λόγου των πλευρών των τοιχωμάτων, η περίφημη δεν αποδίδει αξίωμα και γι’ αυτό τον λόγο η τεχνική αυτή δεν συνιστάται.

Πλήρη Αποδιοργάνωση: Οι βλάβες αυτού του βαθμού είναι και οι μεγαλύτερες και αποκαθίστανται με πλήρη επισκευή και ενίσχυση. Αυτό επιτυγχάνεται με μανδύες από οπλισμένο σκυρόδεμα η τεχνική των οποίων είναι η πλέον αποτελεσματική μέθοδος αύξησης της αντοχής, δυσκαμπίας και πλαστικότητας. Στις περιπτώσεις που απαιτείται αύξηση της διαματητικής αντοχής ή ζητείται αύξηση της καμπυλικής αντοχής ο μανδύας μπορεί να κατασκευαστεί χωρίς σύνδεση στους δοκούς των οροφών (30-50mm απόσταση από τον πυθμένα των δοκών).

ΒΙΒΛΙΟΓΡΑΦΙΑ

ΕΠΙΣΚΕΥΗ – ΕΝΙΣΧΥΣΗ ΘΕΜΕΛΙΩΝ