<u>ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΣΥΜΠΕΡΙΦΟΡΑΣ</u> ΔΟΜΙΚΩΝ ΣΤΟΙΧΕΙΩΝ

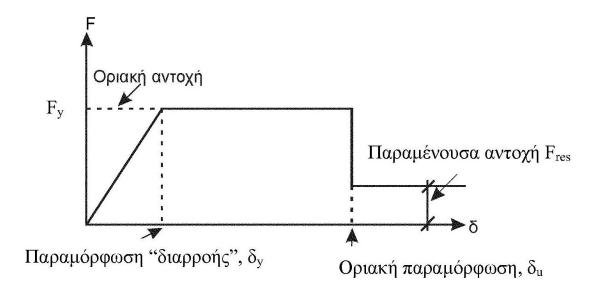
- Α. Ορισμοί Βασικά Χαρακτηριστικά
- Β. Εντατικό μέγεθος αντίστασης διαρροής ή αστοχίας.
- Γ. Παραμόρφωση διαρροής
- Δ. Παραμόρφωση αστοχίας
- Ε. Μετελαστική διατμητική αστοχία

Α. Ορισμοί - Βασικά Χαρακτηριστικά

- Καμπύλη έντασης παραμόρφωσης.
 - Διάγραμμα εντατικού μεγέθους "F" συναρτήσει παραμόρφωσης ή σχετικής μετακίνησης "δ".
 - Περιγράφει τη μηχανική συμπεριφορά ενός δομικού στοιχείου, της κρίσιμης περιοχής ενός δομικού στοιχείου ή μιας ενώσεως μεταξύ στοιχείων (κόμβου).
 - Είδος, διεύθυνση κλπ. του F επιλέγονται ώστε να χαρακτηρίζουν το κύριο μέρος της έντασης που προκαλεί ο σεισμός στο στοιχείο. Η παραμόρφωση δ τέτοια ώστε σε συνδυασμό με το $F \rightarrow ενέργεια$ παραμόρφωσης στοιχείου.
 - Για κάμψη καθοριστική: M (1/r), για διάτμηση: V γ
 - Περιβάλλουσα εξασθενημένων αποκρίσεων F μετά από πλήρως ανακυκλιζόμενη επιβαλλόμενη παραμόρφωση ±δ.

Α. Ορισμοί - Βασικά Χαρακτηριστικά

- Ελαστικός κλάδος διαρροή.
 - Πραγματική καμπύλη F δ προσεγγίζεται με πολυγραμμικό διάγραμμα.



Αρχικός ευθύγραμμος κλάδος μέχρι τη διαρροή. Στη συνέχεια περίπου οριζόντια μέχρι την αστοχία.

Α. Ορισμοί - Βασικά Χαρακτηριστικά

- Ελαστικός κλάδος διαρροή.
 - F_y : Οριακή αντίσταση για την κρίσιμη αστοχία.
 - (i) Για κάμψη;

 $F_v = M_u$ αν χρησιμοποιούνται ροπές

 $F_{y} = V_{Mu}$ αν χρησιμοποιούνται τέμνουσες

(ii) Για διάτμηση (V_u < V_{Mu}) :

 $F_v = M_{Vu}$ αν χρησιμοποιούνται ροπές

 $F_y = V_u$ αν χρησιμοποιούνται τέμνουσες

όπου V_{Mu} = $M_u/(a_s d)$ με a_s =M/(V·d) ο λόγος διάτμησης.

- Η δ_γ λαμβάνει υπόψη όλες τις παραμορφώσεις κατά τη διαρροή (καμπτικές, διατμητικές, εξόλκευση οπλισμών)
- Δυσκαμψία: K= F_y/ δ_y. Στην περίπτωση των αγνώστων οπλισμών λαμβάνεται το 25% της δυσκαμψίας αρηγμάτωτου στοιχείου.

Α. Ορισμοί - Βασικά Χαρακτηριστικά

• Μετελαστικός κλάδος.

- Για καλή πλαστιμότητα \rightarrow οριζόντιος μέχρι την παραμόρφωση αστοχίας $\delta_{\rm u}$
- Εξασθένιση λόγω ανακύκλισης ή φαινομένων $2^{a\varsigma}$ τάξης \to αρνητική κλίση.
 - * στις ανελαστικές μεθόδους μπορεί να υπάρξουν προβλήματα. Συνίσταται κατάλληλη μείωση της F_y και χρήση χαμηλότερου μετελαστικού κλάδου.

• Παραμόρφωση αστοχίας - πλαστιμότητα.

- Παραμόρφωση αστοχίας δ_u: 20% μείωση της απόκρισης σε σχέση με τη μέγιστη. Όχι απαραίτητα απώλεια αντίστασης σε κατακόρυφα φορτία.
- Ικανότητα πλαστικής παραμόρφωσης: $\delta_{u,pl} = \delta_u \delta_y$
- Έκφραση παραμόρφωσης μέσω του λόγου $\delta/\delta_y \to \delta$ εικτης πλαστιμότητας: $\mu_{\delta} = \delta_u/\delta_y$. Αντίστοιχα αν χρησιμοποιηθούν στροφές χορδής θ ή καμπυλότητες (1/r) προκύπτουν οι μ_{θ} και $\mu_{1/r}$.

Α. Ορισμοί - Βασικά Χαρακτηριστικά

Απομένουσα αντοχή.

- Η περίπου σταθερή απόκριση F_{res} από $\delta_u \to \pi$ αραμόρφωση που προκαλεί απώλεια ικανότητας του στοιχείου να φέρει φορτία βαρύτητας.
- Τόσο η F_{res} όσο και η τιμή της παραμόρφωσης που χάνεται η αντίσταση σε φορτία βαρύτητας εκτιμώνται δύσκολα.

• Πλάστιμη και ψαθυρή συμπεριφορά.

- μ_{δ} ή μ_{Θ} > 2.5, $\mu_{1/r}$ > 4.0 \rightarrow πλάστιμη συμπεριφορά. Διαφορετικά ψαθυρή.
- Στοιχεία O/Σ που διαρρέουν σε διάτμηση πριν την κάμψη $(V_{Mu}=M_u/(a_sd)>V_u) \to \psi a \theta u \rho \eta$ συμπεριφορά.
- Στοιχεία O/Σ που διαρρέουν σε κάμψη πριν την διάτμηση $(V_{M_{II}}=M_{II}/(a_sd) < V_{II}) \to \pi λάστιμη συμπεριφορά.$
- Πλάστιμη συμπεριφορά: ανίσωση ασφαλείας σε όρους παραμορφώσεων.
- Ψαθυρή συμπεριφορά: ανίσωση ασφαλείας σε όρους εντάσεων.
- Πλάστιμα στοιχεία: έλεγχος για μετελαστική διατμητική αστοχία λόγω εξασθένησης διατμητικής αντοχής από ανακύκλιση.

Β. Εντατικό μέγεθος αντίστασης διαρροής ή αστοχίας.

- Γ_ν: οριακή αντοχή από ΕΚΟΣ 2000 για μέσες τιμές αντοχής υλικών.
- Κάμψη καθοριστική: κάτω όριο της F_y η τιμή της ροπής για διαρροή του εφελκυόμενου χάλυβα.
- Για υψηλή τιμή N μπορεί να προηγηθεί αστοχία σκυροδέματος στη θλιβόμενη ζώνη \rightarrow όχι σαφές όριο διαρροής. Συνίσταται ο προσδιορισμός του διαγράμματος M-(1/r) και προσαρμογή ισοδύναμης καμπύλης F-δ.
- Πλακοδοκοί με εφελκυσμό στο πέλμα: συνυπολογισμός των παράλληλων στη δοκό οπλισμών της πλάκας εντός του b_{ef} , επαρκώς αγκυρομένων πέρα από τη διατομή στήριξης.

Για το b_{ef} λαμβάνεται: b_{ef} =min(0.25 l_{b} , 0.5 · απόσταση μέχρι πρώτη παράλληλη δοκό).

- Περιοχές ματίσεων:
 - (i) Στο θλιβόμενο οπλισμό προσμετρώνται και τα δύο άκρα.
 - (ii) Εφελκυόμενες ράβδοι: Γραμμική αύξηση f_y από το άκρο εώς απόσταση I_{bmin} . Για $I_b < I_{bmin}$: στην περιοχή της ένωσης $f_y \cdot (I_b / I_{bmin})$.

Γ. Παραμόρφωση διαρροής

- Καμπυλότητα διαρροής.
 - Υπολογίζεται με βάσει τις παραδοχές επιπεδότητας διατομής,
 γραμμικού νόμου σ-ε για το χάλυβα και το σκυρόδεμα σε θλίψη και μηδενική εφελκυστική αντοχή για το σκυρόδεμα.
 - Αναλυτικές σχέσεις:
 - (α) Διαρροή λόγω διαρροής εφελκυόμενου οπλισμού:

$$(1/r)_{y} = \frac{f_{y}}{E_{s}(1-\xi_{y})d}$$

(β) Διαρροή λόγω μη-γραμμικότητας σκυροδέματος.

$$(1/r)_y = \frac{\varepsilon_c}{\xi_y d} \approx \frac{1.8f_c}{E_c \xi_y d}$$

όπου ξ_{v} το ύψος της θλιβόμενης ζώνης ανηγμένο στο στατικό ύψος d:

$$\xi_{v} = (\alpha^{2}A^{2} + 2\alpha B)^{1/2} - \alpha A$$

 $a=E_s/E_c$ και οι συντελεστές A και B προκύπτουν από τις ακόλουθες σχέσεις:

Γ. Παραμόρφωση διαρροής

- Καμπυλότητα διαρροής.
 - (α) Διαρροή λόγω χάλυβα.

$$A = \rho + \rho' + \rho_v + \frac{N}{bdf_y},$$

$$B = \rho + \rho' \delta' + 0.5 \rho_v (1 + \delta') + \frac{N}{bdf_y}$$

(β) Διαρροή λόγω σκυροδέματος.

$$A = \rho + \rho' + \rho_{v} - \frac{N}{\varepsilon_{c} E_{s} b d} \approx \rho + \rho' + \rho_{v} - \frac{N}{1.8\alpha b d f_{c}}$$

$$B = \rho + \rho' \delta' + 0.5 \rho_{v} (1 + \delta')$$

ρ, ρ΄, ρ_ν ποσοστά εφελκυόμενου, θλιβόμενου και μεταξύ τους κατανεμημένου οπλισμού

δ´=d´/d, με d´ απόσταση θλιβόμενου οπλισμού από ακραία θλιβ. ίνα.

Γ. Παραμόρφωση διαρροής

- Καμπυλότητα διαρροής.
 - Εμπειρικές σχέσεις.

Για υποστυλώματα ή δοκούς

$$(1/r)_y=1.85f_y/E_sh$$

 $\dot{\eta}$
 $(1/r)_v=1.65f_v/E_sd$

Για τοιχώματα

$$(1/r)_y=1.45f_y/E_sh$$

 $\dot{\eta}$
 $(1/r)_y=1.35f_y/E_sh$

• Προσδιορισμός ροπής διαρροής από αντίστοιχη καμπυλότητα.

$$\frac{M_y}{bd^3} = (1/r)_y \left\{ E_c \frac{\xi_y^2}{2} \left(0.5(1+\delta') - \frac{\xi_y}{3} \right) + \left[(1-\xi_y)\rho + (\xi_y - \delta')\rho' + \frac{\rho_v}{6} (1-\delta') \right] \cdot (1-\delta') \frac{E_s}{2} \right\}$$

Γ. Παραμόρφωση διαρροής

• Στροφή χορδής διαρροής.

Για δοκούς ή υποστυλώματα.

$$\theta_y = (1/r)_y \frac{L_s + a_V z}{3} + 0.00135 \left(1 + 1.5 \frac{h}{L_s}\right) + \frac{\varepsilon_y}{d - d_1} \frac{d_b f_y}{6\sqrt{f_c}} \quad (\Sigma.1a)$$

Για τοιχώματα.

$$\theta_y = (1/r)_y \frac{L_s + a_V z}{3} + 0.002 \left(1 - 0.135 \frac{L_s}{h}\right) + \frac{\varepsilon_y}{d - d_1} \frac{d_b f_y}{6\sqrt{f_c}} \quad (\Sigma.2a)$$

Evallaktiká

Για δοκούς ή υποστυλώματα.

$$\theta_{y} = (1/r)_{y} \frac{L_{s} + a_{v}z}{3} + 0.0013 \left(1 + 1.5 \frac{h}{L_{s}}\right) + \frac{0.13(1/r)_{y} d_{b}f_{y}}{\sqrt{f_{c}}} (\Sigma.1b)$$

Για τοιχώματα.

$$\theta_{y} = (1/r)_{y} \frac{L_{s} + a_{v}z}{3} + 0.002 \left(1 - 0.125 \frac{L_{s}}{h}\right) + \frac{0.13(1/r)_{y} d_{b}f_{y}}{\sqrt{f_{c}}} (\Sigma.2b)$$

Γ. Παραμόρφωση διαρροής

- Στροφή χορδής διαρροής.
 - 1ος όρος: συμβολή καμπτικών παραμορφώσεων
 - $2^{\circ\varsigma}$ όρος: μέσες διατμητικές παραμορφώσεις στο μήκος διάτμησης $L_s = a_s \cdot d$
 - 3ος όρος: εξόλκευση ράβδων.
 - $a_v z$: επιρροή μήκους μετάθεσης ροπών. Συντελεστής $a_v = 1$ αν η τέμνουσα που προκαλεί λοξή ρηγμάτωση $V_{R1} < V_{Mu} = M_v / L_s$, αλλιώς O
 - Παράθεση ευθύγραμμων ράβδων:
 - (α) $(1/r)_y$ και M_y για σύγκριση με $V_{R1} \cdot L_s$ (συντελεστής a_v) υπολογίζονται με βάση όσα προβλέπονται για F_y στην περίπτωση ματίσεων.
 - (β) Αν I_b < I_{bmin} ο $2^{o\varsigma}$ όρος των εξίσώσεων πολλαπλασιάζεται με το λόγο (μειωμένης M_y λόγω μάτισης / M_y εκτός του μήκους παράθεσης). Ο $3^{o\varsigma}$ επί το λόγο I_b / I_{bmin} .
- Av V_R < V_{Mu} \to κρίσιμη διάτμηση \to παραμόρφωση διαρροής: $(1/r)_y$ και θ_y επί $V_R L_s/M_y$.

Δ. Παραμόρφωση αστοχίας

- Καμπυλότητα κατά την αστοχία (από κάμψη).
 - Λαμβάνεται υπόψη πιθανή αστοχία λόγω θραύσης του εφελκυόμενου οπλισμού ή αστοχία σκυροδέματος σε θλίψη, πριν η μετά την αποφλοίωση του απερίσφικτου τμήματος.
 - Αστοχία πριν την αποφλοίωση λόγω θραύσης χάλυβα:

$$(1/r)_{su} = \frac{\varepsilon_{su}}{(1-\xi_{su})d}$$
 [\Sigma3]

λόγω θλιπτικής αστοχίας του σκυροδέματος:

$$(1/r)_{cu} = \frac{\varepsilon_{cu}}{\xi_{cu}d}$$
 [24]

ξ_{su}, ξ_{cu} υψος θλιβόμενης ζώνης ανηγμένο στο d

ε_{su} ομοιόμορφη μήκυνση αστοχίας εφελκυόμενου οπλισμού

ε_{си} βράχυνση αστοχίας ακραίας θλιβόμενης ίνας σκυροδέματος

Δ. Παραμόρφωση αστοχίας

- Καμπυλότητα κατά την αστοχία (από κάμψη).
 - Αστοχία χάλυβα πριν απ' την αστοχία της θλιβόμενης ζώνης αν:

$$\xi_{su} = \frac{(1 - \delta') \left(\frac{N}{bdf_c} + \frac{\rho f_t}{f_c} - \omega' + \frac{\epsilon_{co}}{3\epsilon_{su}} \right) + \left(\frac{1 + \delta'}{2} \right) \frac{\rho_v (f_y + f_t)}{f_c}}{(1 - \delta') \left(1 + \frac{\epsilon_{co}}{3\epsilon_{su}} \right) + \frac{\rho_v (f_y + f_t)}{f_c}}$$
 [Г1] $\leq \epsilon_{su} / (\epsilon_{cu} + \epsilon_{su})$

Η απαίτηση αυτή μεταφράζεται στην ακόλουθη συνθήκη:

$$\frac{N}{bdf_{c}} < \frac{\varepsilon_{cu} - \frac{\varepsilon_{co}}{3}}{\varepsilon_{cu} + \varepsilon_{su}} + \omega' - \frac{\rho f_{t}}{f_{c}} - \frac{\rho_{v}(f_{y} + f_{t})}{f_{c}} \frac{\varepsilon_{su}(1 + \delta') - \varepsilon_{cu}(1 - \delta')}{(1 - \delta')(\varepsilon_{su} + \varepsilon_{cu})}$$
[[72]

ε_{c0}≈0.002 και ε_{cu}=0.0035 (απερίσφικτο σκυρόδεμα)

f_t εφελκυστική αντοχή χάλυβα.

Τότε αστοχία για $(1/r)_u = (1/r)_{su}$

Δ. Παραμόρφωση αστοχίας

- Καμπυλότητα κατά την αστοχία (από κάμψη).
 - Αν η προηγούμενη συνθήκη δεν ικανοποιείται → αποφλοίωση και προσωρινή πτώση καμπτικής αντίστασης. Τότε:

Υπολογίζεται η ροπή αντοχής M_{RO} της πλήρους και απερίσφικτης διατομής.

Υπολογίζεται η ροπή αντοχής M_{Rc} του περισφιγμένου πυρήνα με βάση τα f_{cc} , ϵ_{cc} του περισφιγμένου σκυροδέματος και για διαστάσεις b_c , d_c και d_c ΄ που αναφέρονται στον πυρήνα.

- (i) $\rm M_{Rc}$ < 0.8 $\rm M_{RO}$: αστοχία διατομής ightarrow εξάντληση ε $_{cu}$ ightarrow (1/r) $_{u}$ =(1/r) $_{cu}$
- (ii) M_{Rc} > 0.8M_{RO} : αστοχία αφορά περισφιγμένο πυρήνα.

Δ. Παραμόρφωση αστοχίας

- Καμπυλότητα κατά την αστοχία (από κάμψη).
 - (i) M_{Rc} < 0.8 M_{RO} υπολογισμός ξ_{cu} για χρήση στη [Σ4] Εξάντληση ϵ_{cu} απερίσφικτου με διαρροή εφελκυόμενου οπλισμού εάν ξ < $\epsilon_{\text{cu}}/(\epsilon_{\text{cu}}+\epsilon_{\text{v}})$ \rightarrow

$$\frac{\varepsilon_{cu} - \frac{\varepsilon_{co}}{3}}{\varepsilon_{cu} + \varepsilon_{su}} + \omega' - \frac{\rho f_t}{f_c} - \frac{\rho_v(f_y + f_t)}{f_c} \frac{\varepsilon_{su}(1 + \delta') - \varepsilon_{cu}(1 - \delta')}{(1 - \delta')(\varepsilon_{su} + \varepsilon_{cu})} < \frac{N}{bdf_c} \le \omega' - \omega - \frac{\delta'}{1 - \delta'} \frac{\rho_v f_y}{f_c} + \frac{\left(\varepsilon_{cu} - \frac{\varepsilon_{co}}{3}\right) + (\varepsilon_{cu} - \varepsilon_y) \frac{\rho_v f_y}{(1 - \delta')f_c}}{\varepsilon_{cu} + \varepsilon_y} \left[\boxed{\Gamma 4} \right]$$

Σε αυτή την περίπτωση το ξ υπολογίζεται ως:

$$\xi_{cu} = \frac{(1-\delta')\left(\frac{N}{bdf_c} + \omega - \omega'\right) + (1+\delta')\frac{\rho_v f_y}{f_c}}{(1-\delta')\left(1 - \frac{\varepsilon_{co}}{3\varepsilon_{cu}}\right) + 2\frac{\rho_v f_y}{f_c}}$$
[[75]

Δ. Παραμόρφωση αστοχίας

- <u>Καμπυλότητα κατά την αστοχία (από κάμψη).</u>
 - (i) M_{Rc} < 0.8M_{RO} υπολογισμός ξ_{cu} για χρήση στη [Σ4] Εάν η προηγούμενη συνθήκη (ανισότητα) δεν ικανοποιείται, δηλαδή:

$$\omega' - \omega - \frac{\delta'}{1 - \delta'} \frac{\rho_v f_y}{f_c} + \frac{\left(\varepsilon_{cu} - \frac{\varepsilon_{co}}{3}\right) + (\varepsilon_{cu} - \varepsilon_y) \frac{\rho_v f_y}{(1 - \delta') f_c}}{\varepsilon_{cu} + \varepsilon_y} \le \frac{N}{b df_c} \quad [\Gamma 6]$$

τότε το ξ προκύπτει ως η θετική ρίζα της ακόλουθης εξίσωσης:

$$\left[1 - \frac{\varepsilon_{co}}{3\varepsilon_{cu}} - \frac{\rho_{v}f_{y}}{2(1 - \delta')f_{c}} \frac{(\varepsilon_{cu} - \varepsilon_{y})^{2}}{\varepsilon_{cu}\varepsilon_{y}}\right] \xi_{cu}^{2} + \left[\omega' + \omega \frac{\varepsilon_{cu}}{\varepsilon_{y}} - \frac{N}{bdf_{c}} + \frac{\rho_{v}f_{y}}{(1 - \delta')f_{c}} \left(\frac{\varepsilon_{cu}}{\varepsilon_{y}} - \delta'\right)\right] \xi_{cu} - \left[\omega + \frac{\rho_{v}f_{y}}{2(1 - \delta')f_{c}}\right] \frac{\varepsilon_{cu}}{\varepsilon_{y}} = 0 \quad \text{[$\Gamma7$]}$$

Δ. Παραμόρφωση αστοχίας

- Καμπυλότητα κατά την αστοχία (από κάμψη).
 - (i) $M_{Rc} > 0.8 M_{RO}$
 - (α) Εξάντληση μήκυνσης αστοχίας εφελκυόμενου οπλισμού στον περισφιγμένο πυρήνα \to (1/r) $_{\rm su}$ \to εξίσωση [Σ3]
 - Το ξ_{su} από [Γ1] [Γ2] με χρήση f_{cc} , ϵ_{cc} για το περισφιγμένο σκυρόδεμα και b_c , d_c , d_c διαστάσεις για τον πυρήνα.
 - (β) Εξάντληση βράχυνσης αστοχίας $ε_{cu,c}$ περισφιγμένου σκυροδέματος \to (1/r) $_{u}$ =(1/r) $_{cu}$ \to εξίσωση [Σ4]
 - Το ξευ από [Γ4] [Γ7] με χρήση f_{cc} , ϵ_{cc} , $\epsilon_{cu,c}$ για το περισφιγμένο σκυρόδεμα και b_c , d_c , d_c διαστάσεις για τον πυρήνα.

Δ. Παραμόρφωση αστοχίας

- Γωνία στροφής χορδής στην αστοχία πλαστική γωνία στροφής
 - Γωνία στροφής πλαστικής άρθρωσης από διαρροή στο άκρο εώς καμπτική αστοχία (διαθέσιμη τιμή):

$$\theta_{\rm u}^{\rm p1} = [(1/r)_{\rm u} - (1/r)_{\rm y}] L_{\rm p1}$$

• L_{pl}: μήκος πλαστικής άρθρωσης. Ιδεατό μέγεθος που ορίζεται ώστε να ισχύει η προηγούμενη εξίσωση. Εκτιμάται ως:

$$L_{pl} = 0.1L_s + \frac{0.25f_y}{\sqrt{f_c}} d_b$$

• Γωνία στροφής χορδής στην αστοχία (διαθέσιμη τιμή):

$$\theta_{u} = \theta_{y} + ((1/r)_{u} - (1/r)_{y})L_{pl}\left(1 - \frac{0.5L_{pl}}{L_{s}}\right)$$

Χρήση $L_{pl} \to \mu$ έσες τιμές θ_{pl} και θ_{u} . Για μέσες τιμές μείον τυπική απόκλιση $40\%L_{pl}$. Για κάτω όριο $30\%L_{pl}$

Δ. Παραμόρφωση αστοχίας

- Γωνία στροφής χορδής στην αστοχία πλαστική γωνία στροφής.
 - Εμπειρική σχέση για υποστυλώματα διατασιολογημένα και κατασκευασμένα μετά το 1985 (γωνία στροφής χορδής κατά την αστοχία):

$$\theta_{um} = 0.016 \cdot (0.3^{\circ}) \left[\frac{\max(0.01, \omega')}{\max(0.01, \omega)} f_c \right]^{0.225} (a_s)^{0.35} 25^{\left(\alpha \rho_s \frac{f_{yw}}{f_c}\right)} (1.25^{100 \rho_d})$$
 [\$\Sigma 7a]

α_s λόγος διάτμησης

ω, ω΄ ποσοστό εφελκυόμενου και θλιβόμενου οπλισμού (ο μεταξύ τους κατανεμημένος θεωρείται εφελκυόμενος)

 $v = N/bhf_c$

 ρ_s = $A_{sx}/b_w s_h$ ποσοστό εγκάρσιου οπλισμού παράλληλα στη διεύθυνση φόρτισης

ρ_d ποσοστό δισδιαγώνιου οπλισμού.

Δ. Παραμόρφωση αστοχίας

- Γωνία στροφής χορδής στην αστοχία πλαστική γωνία στροφής.
 - Πλαστικό τμήμα γωνίας στροφής χορδής κατά την αστοχία.

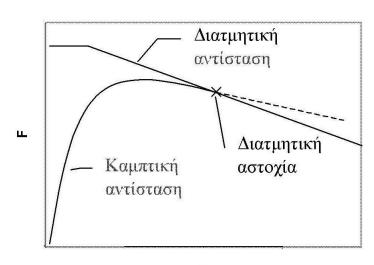
$$\theta_{um}^{pl} = \theta_{u} - \theta_{y} = 0.0145(0.25^{v}) \left[\frac{max(0.01,\omega')}{max(0.01,\omega)} \right]^{0.3} (f_{c})^{0.2} (a_{s})^{0.35} 25^{\left(\alpha\rho_{s} \frac{f_{yw}}{f_{c}}\right)} (1.275^{100\rho_{d}}) \quad [\Sigma7\beta]$$

- Για τοιχώματα: [Σ7α]×0.625 και [Σ7β]×0.6
- Στοιχεία χωρίς αντισεισμικές κατασκευαστικές λεπτομέρειες: [Σ7α] και [Σ7β]×0.85
- Υποστύλωμα με μάτιση μήκους I_b στη διατομή βάσης: για την πλαστική γωνία στροφής \rightarrow διπλάσιο ω', \times (I_b 10Φ)/ 30Φ , εφόσον I_b < 40Φ
- Τοίχωμα με μάτιση μήκους l_b στη διατομή βάσης: ομοίως αλλά με χρήση των κατάλληλων συντελεστών.
- Λείες ράβδοι: [Σ7α]×0.575 και [Σ7β]×0.375
- Λείες ράβδοι και μάτιση στη βάση με άγγιστρα $I_b \ge 15\Phi$: $a_s \to L_s = L_s I_b$, $[\Sigma 7a] \times 0.0025(180 + min(50, <math>I_b/\Phi))(1 I_b/L_s)$ $[\Sigma 7\beta] \times 0.0035(60 + min(50, <math>I_b/\Phi))(1 I_b/L_s)$

Δ. Μετελαστική διατμητική αστοχία

- Μηχανισμοί εξασθένισης.
 - Λειοτρίβιση ρωγμών μείωση αλληλεμπλοκής αδρανών.
 - Συσσώρευση ανελαστικών παραμορφώσεων στους συνδετήρες μείωση τάσεων συνάφειας κατά μήκος τους \rightarrow διεύρυνση ρωγμών.
 - Εξασθένιση δράσης βλήτρου.
 - Διαμπερείς καμπτικές ρωγμές λόγω ανακύκλισης.
 - Μείωση αντοχής λοξών θλιπτήρων.

Σχηματικά:



Ε. Μετελαστική διατμητική αστοχία

• Υπολογισμός.

$$V_{R} = \frac{h - x}{2L_{s}} min(N, 0.55A_{c}f_{c}) + (1 - 0.05 min(5, \mu_{\Delta}^{pl})) [0.16 max(0.5, 100\rho_{tot})(1 - 0.16 min(5, a_{s}))\sqrt{f_{c}}A_{c} + V_{w}]$$

h ύψος διατομής

χ ύψος θλιβόμενης ζώνης

Ν αξονικό φορτίο (για εφελκυσμό = 0)

ας λόγος διάτμησης

 A_c επιφάνεια σκυροδέματος (b_w d σε ορθογωνική - $\pi D_c^2/4$ σε κυκλικές, D_c διάμετρος πυρήνα εντός των συνδετήρων)

ρ τοτ συνολικό ποσοστό διαμήκους οπλισμού

V_w συμβολή εγκάρσιου οπλισμού:

- ορθογωνική: $V_w = \rho_w b_w z f_{yw}$
- Κυκλικές: $V_w = (\pi/2)(A_{sw}/s) f_{yw}$ (D-2c)

Ε. Μετελαστική διατμητική αστοχία

- Οριακές τιμές.
 - Τοιχώματα αστοχία κορμού σε λοξή θλίψη:

$$V_{R,max} = 0.25 \Big(1 - 0.06 \, min \Big(5, \, \mu_{\Delta}^{pl} \Big) \Big) \Big(1 + 1.6 \, min (0.2, \frac{N}{A_c f_c}) \Big) \Big(1 + 0.17 \, max (1.5, 100 \rho_{tot}) \Big) \Big(1 - 0.24 \, min (2, a_s) \Big) f_c \, max \Big(0.4, 1 - \frac{f_c \, (MPa)}{150} \Big) b_w z + \frac{1}{150} \left(1 - \frac{1}{150} \right) \left(1 - \frac{1}{$$

• Υποστυλώματα με α_s≤2 - θλιπτική αστοχία σκυροδέματος κατά τη διαγώνιο του στοιχείου

$$V_{R,max} = \frac{1}{6} \left(1 - 0.02 \min(5, \mu_{\Delta}^{pl}) \right) \left(1 + 1.3 \frac{N}{A_c f_c} \right) \left(1 + 0.4 \rho_{tot} \right) f_c \max \left(0.4, 1 - \frac{f_c (MPa)}{100} \right) b_w z \sin 2\theta$$

θ γωνία της διαγωνίου ως προς τον άξονα του στοιχείου και $tan\theta=h/2L_s=0.5/a_s$